(Hodgson & Raymond, 1972). This relationship is discussed in the paper reporting the structure of $[K(C_4H_{10}O_2)]_2[Yb(C_8H_8)_2]$ (Kinsley, Streitwieser & Zalkin, 1985).

This work was supported by the Director, Office of Energy Research, Office of Basic Energy Sciences, Chemical Sciences Division of the US Department of Energy under Contract No. DE-AC03-76SF00098.

References

- HODGSON, K. O. & RAYMOND, K. N. (1972). Inorg. Chem. 11, 3030–3035.
- International Tables for X-ray Crystallography (1974). Vol. IV. Table 2.2, pp. 71–102. Birmingham: Kynoch Press. (Present distributor D. Reidel, Dordrecht.)
- JOHNSON, C. K. (1965). ORTEP. Report ORNL-3794. Oak Ridge National Laboratory, Tennessee.
- KINSLEY, S. A., STREITWIESER, A. JR & ZALKIN, A. (1985). Organometallics, 4, 52–57.
- SHANNON, R. D. (1976). Acta Cryst. A32, 751-767.

Acta Cryst. (1986). C42, 1094–1095

Structure of Dichlorobis(pyridine N-oxide)zinc(II)

BY N. M. MCCONNELL, R. O. DAY AND J. S. WOOD

Department of Chemistry, University of Massachusetts, Amherst, MA 01003, USA

(Received 31 July 1985; accepted 21 February 1986)

Abstract. $[ZnCl_2(C_5H_5NO)_2], M_r = 326.5,$ orthorhombic, Fdd2, a = 12.318 (4), b = 28.176 (6), c =7.268 (2) Å, V = 2522.5 (7) Å³, Z = 8, $D_x = 1.72$, $D_m = 1.70 \text{ g cm}^{-3}$, λ (Mo K α) = 0.71069 Å, $\mu =$ $24 \cdot 1 \text{ cm}^{-1}$, F(000) = 1312, T = 297 K. Final R =0.019 for 599 observed reflections. The $[ZnCl_2(C_5H_5NO)_2]$ molecule has a distorted tetrahedral geometry (crystallographically required C_2) with Zn-O and Zn-Cl distances of 1.992(2) and 2.214(1) Å respectively. The pyridine rings are planar within 0.009 (3) Å.

Experimental. The title complex was prepared from approximately 1:1 molar ratios of anhydrous zinc dichloride and pyridine N-oxide in methanol/ethanol mixtures and recrystallized from the same solvents. Diffractometer used: Enraf-Nonius CAD-4 equipped with graphite monochromator. Cell dimensions: from 15 reflections in range $22 \le 2\theta \le 30^\circ$. Density measured by flotation. Crystal dimensions: $\sim 0.3 \times$ 0.25×0.4 mm. Crystal faces not readily indexed, and therefore no absorption corrections made; estimate of maximum relative error in intensity due to absorption ca 12%. Total of 606 independent reflections (h, 0-14; k, 0-33; l, 0-8) measured in range $\sin \theta/\lambda \le 0.6 \text{ Å}^{-1}$ using $\omega - 2\theta$ scan technique. Four standards monitored, no variation with time. Standard deviations assigned as $\sigma(I) = [\sigma_{\text{count}}^2 + (0.04 I)^2]^{1/2};$ 599 reflections with $F_o \ge 2\sigma(F_o)$ used for refinement. Structure solved by Patterson and Fourier methods: least-squares refinement (based on F) carried out using LINEX, a modified version of ORFLS (Busing, Martin & Levy, 1962); function minimized $\sum w(|F_o| - |F_c|)^2$ with weights

 $w = [2LpF_o/\sigma(I)]^2$. Pyridine-ring H atoms included as fixed contributions with C-H set at 0.98 Å. Initial refinement with all *hkl* indices positive gave R = 0.035, but with an unsatisfactory goodness of fit. Since Fdd2 is a polar space group, the refinement was continued with all indices reassigned with negative values, and this converged at R = 0.019, wR = 0.028 and S = 1.13 for the 77 variables refined. At convergence all $\Delta p_i < 0.02$ $\times \sigma(p_i)$ and maximum and minimum values in final difference map 0.40 and $-0.55 \text{ e} \text{ Å}^{-3}$. Atomic scattering factors for neutral atoms from International Tables for X-ray Crystallography (1974); anomalousdispersion corrections for Zn and Cl included (Cromer & Liberman, 1970). Calculations carried out on a CDC-Cyber 175 computer. Atomic coordinates are listed in Table 1* and bond distances and angles in Table 2. An ORTEP view (Johnson, 1965) of the molecule is given in Fig. 1.

Related literature. Structures related to the present compound: $[CuCl_2(C_5H_5NO)_2]_2$ (Morrow, 1974), $[CuCl_2(C_5H_5NO)]_2$ (Estes & Hodgson, 1976) and $[ZnI_2(C_5H_5NO)_2]$ (Sawitzki & von Schnering, 1974).

We thank the University Computation Center for a generous allocation of computer time.

0108-2701/86/081094-02\$01.50

© 1986 International Union of Crystallography

^{*} Lists of anisotropic thermal parameters, observed and calculated structure-factor amplitudes, H-atom coordinates and least-squares-planes' data have been deposited with the British Library Lending Division as Supplementary Publication No. SUP 42858 (5 pp.). Copies may be obtained through The Executive Secretary, International Union of Crystallography, 5 Abbey Square, Chester CH1 2HU, England.

Table 1. Atomic coordinates $(\times 10^4)$ and equivalent isotropic thermal parameters $(Å^2 \times 10^4)$ for $[ZnCl_2(C_5H_5NO)_2]$

	x	у	Z	U_{eq}^*
Zn	0	0	0	357 (3)
Cl	1492 (1)	187 (1)	1535 (2)	512 (5)
0	388 (2)	-542 (1)	-1634 (4)	517 (12)
N	-389 (2)	-798 (1)	-2448 (4)	360 (10)
C(1)	-337 (3)	-1275 (1)	-2269 (5)	436 (16)
C(2)	-1059 (3)	-1558 (1)	-3168 (6)	485 (17)
C(3)	-1863 (3)	-1357(1)	-4249 (5)	531 (18)
C(4)	-1917 (3)	-871 (1)	-4377 (5)	494 (18)
C(5)	-1178 (3)	-596 (1)	-3471 (5)	435 (16)
	* $U_{eq} =$	$\frac{1}{3}\sum_{i}\sum_{j}U_{ij}\mathbf{a}_{i}.\mathbf{a}_{i}$	$a_i^*a_i^*$.	

 Table 2. Bond distances (Å) and angles (°) in dichlorobis(pyridine N-oxide)zinc(II)

Zn–O	1.992 (2)	Zn-Cl	2.214 (1)
	O-N	1.338 (4)	
N-C(1) C(1)-C(2) C(2)-C(3) O-Zn-O' O-Zn-Cl	1.353 (4) 1.360 (5) 1.384 (5) 106.8 (2) 106.4 (1)	N-C(5) C(4)-C(5) C(3)-C(4) Cl-Zn-Cl' O-Zn-Cl'	1.350 (4) 1.365 (5) 1.375 (6) 119.5 (1) 108.5 (1)
	Zn–O–N	120-4 (1)	
O-N-C(1) N-C(1)-C(2) C(1)-C(2)-C(3) C(2)-C(3)-C(4)	117-4 (3) 120-2 (3) 120-1 (3) 118-6 (3)	O-N-C(5) N-C(5)-C(4) C(5)-C(4)-C(3) C(1)-N-C(5)	122.1 (2) 120.4 (3) 120.1 (3) 120.5 (3)

(') denotes twofold-related atoms.

Acta Cryst. (1986). C42, 1095-1097

Structure of Methyl Tetrahydro-3,4-dihydroxy-2,4,5-trimethyl-2-furancarboxylate at 163 K

S. B. LARSON,* H. SUH AND C. S. WILCOX

Department of Chemistry, University of Texas at Austin, Austin, TX 78712, USA

(Received 16 January 1986; accepted 28 February 1986)

Abstract. $C_9H_{16}O_5$, $M_r = 204.22$, monoclinic, $P2_1$, a = 10.5910 (14), b = 18.908 (3), c = 7.9060 (8) Å, $\beta = 100.849$ (13)°, V = 1554.9 (3) Å³, Z = 6, $D_x = 1.308$ g cm⁻³, λ (Mo K α) = 0.71069 Å, $\mu = 0.997$ cm⁻¹, F(000) = 660, R = 0.0389 for 3978 reflections ($F \ge 4\sigma_F$). The asymmetric unit is a trimer linked through three hydrogen bonds [O...H distances 1.91 (3), 1.97 (3), 2.09 (4) Å] and a bifurcated hydrogen bond $[O \cdots H \text{ distances } 2 \cdot 32 \text{ (4), } 2 \cdot 37 \text{ (4) Å}]$. In addition, trimers are linked along **a** and along **b** by hydrogen bonds $[O \cdots H \text{ distances } 1 \cdot 94 \text{ (4), } 2 \cdot 05 \text{ (3) Å, respectively}]$.

Experimental. Title compound prepared from D-ribonic acid. Absolute configuration correct as shown [m.p. 408 K; $[\alpha]_D^{25^{\circ}C} = -32^{\circ}(CHCl_3, 0.92 \text{ g dm}^{-3})]$. Transparent, colorless crystals obtained from ethyl acetate/ hexane solution. Crystal for data collection cut from a large plate having a corrugated surface. Summary of data collection and structural refinement in Table 1.

Fig. 1. An *ORTEP* plot of the $[ZnCl_2(C_5H_5NO)_2]$ molecule viewed perpendicular to [001]. Ellipsoids are at the 50% probability level.

References

Busing, V	V. K., M	lartin, K.	0. &	LEVY,	H. A. (196	52). ORFLS.
Report	ORNL	-TM-305.	Oak	Ridge	National	Laboratory,
Tenness	see.					
Cromer,	D. T. &	& LIBERM	an, D	. (1970)). J. Chen	n. Phys. 53,

1891–1898.

ESTES, E. D. & HODGSON, D. J. (1976). Inorg. Chem. 15, 348-351.

- International Tables for X-ray Crystallography (1974). Vol. IV, pp. 72–98. Birmingham: Kynoch Press. (Present distributor D. Reidel, Dordrecht.)
- JOHNSON, C. K. (1965). ORTEP. Report ORNL-3794. Oak Ridge National Laboratory, Tennessee.
- MORROW, J. C. (1974). J. Cryst. Mol. Struct. 4, 243-252.
- SAWITZKI, G. & VON SCHNERING, H. G. (1974). Chem. Ber. 107, 3266–3314.

© 1986 International Union of Crystallography

^{*} Current address: Nucleic Acid Research Institute, Costa Mesa, CA 92626, USA.